今天要介绍的TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要。因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法。
1.PageRank算法
PageRank设计之初是用于Google的网页排名的,以该公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。PageRank通过互联网中的超链接关系来确定一个网页的排名,其公式是通过一种投票的思想来设计的:如果我们要计算网页A的PageRank值(以下简称PR值),那么我们需要知道有哪些网页链接到网页A,也就是要首先得到网页A的入链,然后通过入链给网页A的投票来计算网页A的PR值。这样设计可以保证达到这样一个效果:当某些高质量的网页指向网页A的时候,那么网页A的PR值会因为这些高质量的投票而变大,而网页A被较少网页指向或被一些PR值较低的网页指向的时候,A的PR值也不会很大,这样可以合理地反映一个网页的质量水平。那么根据以上思想,佩奇设计了下面的公式:
该公式中,Vi表示某个网页,Vj表示链接到Vi的网页(即Vi的入链),S(Vi)表示网页Vi的PR值,In(Vi)表示网页Vi的所有入链的集合,Out(Vj)表示网页,d表示阻尼系数,是用来克服这个公式中“d *”后面的部分的固有缺陷用的:如果仅仅有求和的部分,那么该公式将无法处理没有入链的网页的PR值,因为这时,根据该公式这些网页的PR值为0,但实际情况却不是这样,所有加入了一个阻尼系数来确保每个网页都有一个大于0的PR值,根据实验的结果,在0.85的阻尼系数下,大约100多次迭代PR值就能收敛到一个稳定的值,而当阻尼系数接近1时,需要的迭代次数会陡然增加很多,且排序不稳定。公式中S(Vj)前面的分数指的是Vj所有出链指向的网页应该平分Vj的PR值,这样才算是把自己的票分给了自己链接到的网页。
2.1 TextRank算法提取关键词
TextRank是由PageRank改进而来,其公式有颇多相似之处,这里给出TextRank的公式:
可以看出,该公式仅仅比PageRank多了一个权重项Wji,用来表示两个节点之间的边连接有不同的重要程度。TextRank用于关键词提取的算法如下:
1)把给定的文本T按照完整句子进行分割,即
3)构建候选关键词图G = (V,E),其中V为节点集,由(2)生成的候选关键词组成,然后采用共现关系(co-occurrence)构造任两点之间的边,两个节点之间存在边仅当它们对应的词汇在长度为K的窗口中共现,K表示窗口大小,即最多共现K个单词。
4)根据上面公式,迭代传播各节点的权重,直至收敛。
5)对节点权重进行倒序排序,从而得到最重要的T个单词,作为候选关键词。
6)由5得到最重要的T个单词,在原始文本中进行标记,若形成相邻词组,则组合成多词关键词。
2.2 TextRank算法提取关键词短语
提取关键词短语的方法基于关键词提取,可以简单认为:如果提取出的若干关键词在文本中相邻,那么构成一个被提取的关键短语。
2.3TextRank生成摘要
将文本中的每个句子分别看做一个节点,如果两个句子有相似性,那么认为这两个句子对应的节点之间存在一条无向有权边。考察句子相似度的方法是下面这个公式:
公式中,Si,Sj分别表示两个句子,Wk表示句子中的词,那么分子部分的意思是同时出现在两个句子中的同一个词的个数,分母是对句子中词的个数求对数之和。分母这样设计可以遏制较长的句子在相似度计算上的优势。
以上就是本篇文章【关键词提取算法-TextRank】的全部内容了,欢迎阅览 ! 文章地址:http://sicmodule.glev.cn/news/9071.html 资讯 企业新闻 行情 企业黄页 同类资讯 首页 网站地图 返回首页 歌乐夫资讯移动站 http://sicmodule.glev.cn/mobile/ , 查看更多