热门推荐
Tableau 157亿收购背后,50页深度报告看清BI的未来(下)| 爱分析报告
2024-11-14 21:41  浏览:63

来源:雪球App,作者: 爱分析ifenxi,(https://xueqiu.com/5243595231/131272529)

Tableau 157亿收购背后,50页深度报告看清BI的未来(下)| 爱分析报告

4.BI商业智能潜在市场

规模测算与分析

未来,BI商业智能将成为企业智能化决策系统的重要入口。根据BI在不同场景的渗透情况,爱分析将BI市场分为当前市场、增量市场与潜在市场。

其中,当前市场为目前BI厂商的市场总和;增量市场为当前市场中存在但尚未被满足的需求如CRM领域BI与AI结合以辅助销售人员进行决策的需求。

图15: 当前市场、增量市场、潜在市场示意

数据来源:爱分析

4.1 BI当前市场规模及发展趋势

图16: 2017-2020年全球BI市场规模预测

数据来源:Gartner & 爱分析

Gartner 2017年报告指出全球BI市场规模为183亿美元,相比2016年增长7.3%。预计到2020年,全球BI市场将突破228亿美元。

国内BI市场,根据爱分析调研,2019年规模约为50-60亿元。这里面国内BI公司,如永洪科技、帆软、海致BDP、亿信华辰、润乾等公司,合计收入约为25-30亿元;国外BI公司国内收入将会与国内BI企业收入持平,包括SAP、、Oracle、、Tableau和Qlik等公司。

4.2 BI的增量市场与潜在市场

2019年全球BI市场规模约215亿美元,全球的IT投入大概是3.8万亿美元。同期,中国的IT投入将达到2.7万亿人民币,假设中国BI市场总容量和全球市场BI投入占IT的比例应该大体一致,2018中国BI商业智能的总市场容量(当前市场规模+增量市场规模)大概是150亿人民币左右。据此估算,中国BI市场的存量市场仍然有90-100亿人民币。

图17: BI潜在市场的延伸方向

数据来源:爱分析

图18: 当前市场规模、增量市场规模、潜在市场规模示意

数据来源:爱分析测算

由于BI是数据应用的入口,是各个行业数字化转型过程中是必不可少的一环。未来,随着BI向着分析端和数据端两个方向延伸,BI解决方案最终并入大数据整体解决方案的赛道。

根据中国电子信息产业发展研究院发布的《中国大数据产业发展水平评估报告》,预计 2018 年我国大数据核心产业规模突破 5700 亿元,未来2-3年的市场规模的增长率仍将保持35%左右。未来切入这部分应用环节,BI商业智能的潜在市场规模将在的市场空间。

4.3 BI商业智能在不同场景的渗透率

根据当前BI市场规模与市场总容量计算,整体国内BI商业智能市场的渗透率(当前市场规模/市场总容量)约为36%,未来有很大的增长潜力。

从敏捷BI市场来看,国外市场敏捷BI市场份额快速提升,根据爱分析判断,2019年敏捷BI市场规模将达到57亿美元,占全球BI 215亿美元市场规模的27%。

国内敏捷BI市场同样在快速提升,渗透率仅为15%左右。综合国内几家BI厂商的业务表现,国内敏捷BI市场增速在50%左右,远远高出市场平均水平。

从具体行业来看,金融、零售、制造、能源、互联网是BI应用发展较快的几大行业。其中金融与零售行业整体的渗透率最高,制造业与能源行业其次。从公开市场看,由于互联网行业头部公司多有自建BI体系的能力,导致互联网行业整体渗透率偏低。

图19: 传统BI与敏捷BI在五大行业的渗透率

数据来源:爱分析测算

注:

1. 各行业敏捷BI渗透率=各行业敏捷BI市场规模/各行业BI潜在市场规模;

2. 各行业传统BI渗透率=各行业传统BI市场规模/各行业BI潜在市场规模;

3. 各行业气泡大小代表各行业敏捷BI市场规模与传统BI市场规模之和。

5.BI商业智能的未来趋势

5.1 一站式大数据平台是未来趋势

进入2019年,传统BI与敏捷BI出现明显的融合趋势。企业不再满足于一般的报表与敏捷式图表,能够更加灵活、高效的利用数据和进行深度分析成为企业新的BI需求。以云BI平台为基础的一站式大数据平台,成为新的趋势。

一站式大数据平台是集成业务咨询、数据管理、深度分析、数据可视化、数据决策等流程,能够提供完整BI解决方案的通用性平台。通过配置不同的行业/企业模板,一站式大数据平台可以灵活、方便的实现行业/企业BI平台的功能。

图20: 一站式大数据平台与敏捷BI、传统BI区别

数据来源:爱分析

与传统BI相比,一站式平台既可以利用传统BI的数仓资产,更多时候会直接构建数据集市资产,更加灵活方便的对数据资产进行管理。同时,一站式平台具有敏捷BI自助式服务的特性,业务人员可以利用预定义好的图表模板,灵活配置数据指标,实现自助式业务分析。

与敏捷BI相比,一站式大数据平台具有更强数据源管理能力和深度分析功能。敏捷BI一般情况下在数据源接口上做了大量工作,但涉及到海量数据分析,其只能利用数据源本身的分布式计算能力,缺乏对海量数据分析系统性的解决方案,导致性能达不到企业需求。

除前后端性能增强外,一站式平台是面向企业服务和解决方案的产品。传统BI产品在实施过程中具有很高的失败率,通常不足50%。因为企业级数据分析是技术与业务高度耦合的工作,传统数仓建立以后常因为结构不合理导致业务需求得不到满足。

因此,专业解决方案和灵活的通用平台是应用一站式平台不可或缺的两点。行业专家可以通过与业务人员的深入交流制定专业的数据框架,而灵活的通用平台可通过模板配置,实现针对特定行业、企业的需求。

遇到数据框架不合理时,一站式平台通常可以较低的成本迅速调整框架。如、联通公司其BI系统都是构建在永洪通用一站式BI平台之上,只是在企业应用时分别采用了制造业与电信行业模板。

以一站式BI平台为例,其技术架构中数据源不仅包含原有的数据仓库与数据集市,还通过大数据平台实现实时数据采集和流式数据分析,同时还具备非结构化和半结构化数据处理方案。其中数据整合层的内容是传统BI、大数据平台、数据源的一个整合,提供了敏捷BI难以实现的数据源需求与性能需求。

图21: 一站式大数据平台架构示意

数据来源:永洪科技

而对于业务人员,的一站式BI平台又是轻量的,具备自助式的服务特征。业务人员根据自身的数据方案权限即可查询所需的数据指标和规则模板,使用托拉拽的方式即能快速组建业务查询需求。

因此,在大中型企业中,一站式大数据平台逐步替代传统BI和敏捷BI的趋势将越来越明显。但在小型业务中,正如Excel的广泛应用一般,敏捷BI也会占有相当的市场。

5.2 BI与AI融合,降低数据分析的门槛,放大数据分析的价值

BI与AI将在未来进行深度融合。这一融合趋势将快速数据分析的使用门槛,在贴近行业场景的前提下,快速放大数据分析的价值。

图22: 一站式大数据平台数据管理与自助式服务

数据来源:永洪科技

AI技术分为三个流派,以知识图谱为代表的符号学派,以机器学习为代表的连接学派以及以智能机器人为代表的行为学派。在BI行业,知识图谱与机器学习将成为BI与AI融合的主流。AI技术将不局限于目前火热的连接学派中的机器学习技术,而是多种流派技术的融合使用。

图23: BI与AI融合降低数据分析门槛的途径

数据来源:爱分析

BI与自然语言处理NLP、知识图谱等技术的融合,将促使语义搜索成为主流BI查询接口,交互式BI将渐成潮流。根据2019年Gartner的报告预测,到2020年有50%的查询分析通过自然语言搜索、语音搜索完成。在这个领域,基于行业的标注数据与基于专家知识的知识库建设将构建新的行业壁垒。

BI与机器学习技术的融合将促成增强分析的功能快速丰富,这一方面数据科学平台、机器学习平台以及嵌入式分析将成为主要推动力,从而实现预测式分析。适用化更强的AI算法与基于行业的模型,将成为该领域增长的核心要素。

增强分析技术、语义搜索与自助数据准备的成熟将大幅降低现代BI平台的使用门槛。业务人员使用自然语言即可实现预测式分析。需要注意到的是,这个过程并不是一蹴而就的事, Watson近期的裁员表明这两项技术在医疗领域并不能获取比人更高的判别精度。

BI与AI的深度融合将促使BI的行业标签更加明显。在行业内部有数据积累和长期实践的企业,将建立长期优势,迅捷、开放、移动、弹性、自服务、增强分析成为企业对数据技术的新需求,而单纯的BI产品将会成为BI应用中简单的一个环节。

永洪科技利用AI技术可以实现全链路的自服务数据准备工作,大幅增强了可视化分析能力。同时,其分析引擎内置AI深度分析算法,通过可视化工作流的方式,可以进行预测式分析。在金融、物流和公安等领域,专家+AI的应用模式获得了极大的成功。

5.3 边缘计算、IOT等技术成熟,基于大量设备联网后的场景

2020年,全球物联网设备总数将达到340亿,巨量物联网终端的管理将成为巨大难题。物联网一般划分为感知层、传输层和应用层,所以物联网天然的包含数据采集、传递、处理和应用环节。其中,在完成数据采集和传递基础环节的铺垫后,后台数据处理将成为最关键的环节。

5G、边缘计算、智能工厂等技术成熟将推动物联网级的BI平台在物联网后台数据处理中发挥关键作用。在这个过程中,数据实时采集与存储、流计算、数据实时分析与预警以及BI平台与智能工厂的结合将成为现代BI的关键。

目前,制造、能源、物流和交通等行业是对物联网级BI平台需求较高。大部分中大型的制造企业已经建立了比较完善的CRM、ERP、MES、MRP等基础信息化系统,帮助制造企业收集大量的历史数据;另一方面,终端传感器、边缘网关与服务器的部署使得对机器的性能测量和可追踪性变成可能。

以物流行业为例,物流管理系统中包括物流跟踪系统、播种墙分拣系统、RFID及AGV盘点系统等物流智能化系统和设备,时刻产生大量生产数据。现代物流BI系统通常需要进行全量数据分析,这类数据包括库存、入库、出库三个维度的实时数据,以及通过上钻和下钻等功能实现省内与省间的数据联动分析。

图24: 物流行业物联网级BI平台示意

数据来源:永洪科技

实时性作为物流BI系统的核心能力,其快速响应时间通常在10S以内,可实现全量数据联动分析。通过BI的可视化能力,其不仅对外部客户提供更好的可视化感知服务,也可对内加强运输配送环节的安全管控。

5.4 BI商业智能与垂直场景融合,更加贴近客户场景诉求

BI作为企业决策解决方案,熟悉企业业务是必要环节。BI系统在实施过程中,需要重新梳理企业管理方法、流程、体系,并得到管理层、中层和业务层的支持,深入挖掘企业需求,有时还需要IT咨询人员介入,才能制定有效的BI实施方案。在这个过程中,通过BI系统实现智能运维,是垂直行业场景融合的关键。

底层获取数据能力增强,加速了BI与垂直场景融合。随着大数据技术与物联网技术的发展,现代BI可以实时获取生产数据或者经营数据。这类直接获得的数据更多与垂直场景相关,如广告中利用精准营销进行获客引流,供应链管理中利用物联网获得的进出场信息获取仓储管理情况,越来越多的行业属性信息,加速了BI与垂直场景融合。

自助式分析、增强分析的BI方案落地依赖于对垂直场景的深刻理解。通用的BI产品通常不能直接解决业务分析的需求,只有依据业务场景,确定问题边界,才能选择合适的模型和算法,使用增强分析技术,才能制定有效的BI实施方案。例如,交通出行场景,除获取相关的业务数据外,BI系统还必须选择合适的人工智能或者运筹学模型,才能计算相关的最短路程与出行时间。

云BI的快速发展,BI的客户场景通过SaaS快速实现。BI云化后,BI产品的应用和部署将变得更加便捷,客户将按照业务场景选择BI服务,而不是简单的选用BI的通用型服务。简单的如营销过程的用户画像、教育行业的教育评测、征信服务的征信评价均可以通过SaaS服务方式提供给客户。而附加的行业解决方案,正成为现代BI着重开发的要点。

6.BI商业智能厂商竞争分析及典型厂商介绍

6.1 BI商业智能厂商核心竞争力分析

爱分析认为,技术、产品、获客、客群/LTV、场景理解能力五个方面,体现了BI厂商的核心竞争力,这五个方面通过影响客单价和客户数量,对整体收入和利润产生影响。

图25: BI商业智能厂商核心竞争力分析模型

数据来源:爱分析

技术了决定了厂商开拓新业务能力,影响解决客户需求的复杂度,进而影响客单价。在领导者和远见者象限中的厂商,除了本身扎实的技术基础外,在市场前沿技术方面都各具特色。例如、Tableau都推出了广受欢迎的自然语言处理和自动化数据准备功能;ThoughtSpot、则具备市场领先的增强分析功能;Qlik、TIBCO、Sisense在数据管理、混合数据集成具备强有力的竞争优势。

产品与生态影响产品的规模化复制能力,产品/服务的易用性,以及业务发展对人力依赖,并直接影响毛利率空间。无疑在这方面具有最强大的实力,其传统BI产品、敏捷式的Power BI以及具有广泛用户基础的Access和Excel,以及强大的云端部署能力,构成了全链条、全网络的BI应用生态环境。Tableau则可以与的SaaS构成生态协同,双雄组合即使是微软也需暂避锋芒。

客群则直接影响客单价以及市场空间。客户每年IT预算以及传统BI系统投入占比、产品客单价、所服务客群的同行业和跨行业之间的复制能力等因素都影响BI厂商的发展潜力。例如,Tableau客群大客户比例高于Qlik,增长潜力更大;而Looker的参考客户中,有36%分析的数据超过1tb,行表的中位数为5.85亿,在2018年的特殊领域象限中Looker获得显著提升。

获客则直接决定企业能够服务目标客群,影响成本结构中的销售费用占比。这一点上传统BI厂商如、SAS、Oracle具有强大的渠道能力,但这部分厂商在面临转型的环节,在原有BI产品和新的发展趋势上难以取舍。而云服务兴起后,BI厂商大部分都推出了相应的SaaS服务,而在与具有强大的云获客能力。

场景化理解则影响客单价以及客户黏性,对场景理解越深,壁垒越高,竞争越小,客单价越高。可以看到,2019年简单的BI产品已经不能满足行业客户的需要,同时还要匹配相应的行业人员,进行业务适配。

6.2 国内BI领域厂商竞争力分析

国内BI领域厂商参与者众多,但技术门槛不高,竞争非常激烈。国内BI市场基本分为三类,第一类为传统IT巨头,如、SAP等;第二类为云计算厂商,如阿里云、云等;第三类为新型BI厂商,如永洪科技等企业。

从市场集中度看,国内BI市场集中度低,产品差异化不明显。从国外市场来看,Tableau在市场占有率达3-5%时,增速已然放缓,大幅提升市场份额较难;但2017年,Tableau云化后,又恢复超过30%的增速。

Tableau被SaaS鼻祖收购后,市值暴涨超过70%,BI与云的结合成为主流。从这一趋势看,国内采用SaaS服务的一体化BI平台将会获得更加高速的发展。

传统IT巨头预计将逐步退出中国市场,国产场景受到政策扶持。受政策影响,、SAP、Oracle等厂商会逐步退出部分中国市场,这也是国内厂商巨大机会。同时,从美国政府的实体禁运清单中看出,高级BI类产品属于被禁运产品之列,所以国内厂商受政治风波影响,尤其在公共服务领域,弯道超车的机会大增。

随着外退内进的发展,采用国外BI产品的国内厂商逐渐使用国产BI产品进行替代,典型的如采用永洪BI平台替代原有的Oracle BIEE平台产品。

互联网巨头将覆盖中小企业市场,通用型厂商空间有限,业务领域厂商将各具优势。通用型敏捷BI产品,将因技术壁垒低,快速失去竞争优势。同时,由于中小客群价格敏感,需求简单,通用产品即可满足,将成为互联网巨头目标客群,新兴创业公司在中小客户市场很难与之抗衡;而扎根行业、给传统大型企业提供深度行业解决方案的厂商,才有立足之地和长远机会。

6.3 永洪科技

永洪科技成立于2012年,专注于为百亿级数据量的大型企业和各个垂直行业的中小企业提供灵活易用的大数据应用解决方案。其一站式大数据构建平台,可以帮助企业轻松构建数据应用。永洪科技是业内第一家用大数据技术去做数据分析平台建设的公司,这一点上处于国内外领先水平。

通过提供精细化本地实施、完善的咨询服务、成熟的客户成功体系和数据化运营最佳实践的积累,永洪的项目的成功率达95%,这一点远高一般企业不到50%的成功率。

永洪科技的BI包括Yonghong Z-SuiteX-Suite及其SaaS服务,垂直应用与行业解决解决方案,并且能够提供数据资讯、数据治理、项目实施及开发服务。与国外厂商更多将BI产品定位部门级产品不同,永洪科技则背道而驰,不断扩张自己的产品线,将产品做得越来越厚。永洪科技从产品深度和广度两个角度加强数据分析能力,使得产品线具备了全面的一站式数据分析平台能力。

图26: 永洪科技BI产品与服务结构

数据来源:永洪科技&爱分析

永洪科技利用其高性能计算引擎Z-Data Mart,利用列存储、库内计算、内存计算、分布式计算以及分布式通讯技术,可以实现百亿级数据秒级计算。强化数据处理能力,使得BI产品所能处理的数据量更大,由部门级产品转向企业级产品,能够支持更大数据量、更多应用场景,实现增强式自助式分析。

其深度分析引擎Z-Advanced Analytics,连通探索式分析和深度分析,提供一站式数据分析洞察能力。在深度分析引擎内部,封装了机器学习等AI算法,拥有可视化工作流。可将探索式分析查询数据作为深度分析的输入,深度分析结果可以直接通过可视化进行展示,形成业务闭环。

深度分析引擎将自助式分析,升级为自助探索式分析。一方面业务人员可以直接使用平台上现成场景模板进行分析,另一方面数据科学家可以基于平台上的算法自己开发模型。

永洪科技并非只是BI产品提供商,其前期以咨询方式切入大客户,做好顶层设计,然后根据项目需要给企业配置合适的应用解决方案,在这个过程中永洪科技也实现了多个行业解决方案的积累。永洪科技认为BI厂商在平台应用成熟之后,可以将平台积累的成熟行业解决方案出售给客户或者通过合作伙伴渠道出售给有此需求的企业。

永洪科技通过两年时间打磨出国内首个“行业专家团队”,实现差异化的行业、企业、业务场景下的整体解决方案,实现从“数据咨询->实施服务->客户成功->数据分析课程培训”全程服务体系,全方位赋能客户,帮助企业实现数据驱动业务增长。

6.4 Tableau

Tableau成立2003年,2013年登录纽交所,目前市值接近150亿美元。

Tableau是一款敏捷型BI产品,可以使用Tableau便捷的连接不同的数据源,进行探索式、自助式数据查询。截止2019年,Tableau已经连续7年处于Gartner 商业智能和分析平台的魔力象限领导者地位,并具有极强的客户满意度。

Tableau除具备高客户满意度外,还有以下几点优势:产品定位精准,技术方向引领行业发展;具有很高的易用性;成功建立了超过100万的活跃社区。Tableau在2017年收购ClearGraph,并将自然语言查询带入BI领域,2019年其自然语言查询功能正式推出后,大受客户欢迎。

Tableau有五大产品系列:Tableau Desktop、Tableau Server、Tableau Online、Tableau Public以及Vizable,这些产品都是为了解决一个问题:数据可视化,仅通过提供服务的方式进行区别。

90%的Tableau产品都是买断式的,客户可以永久使用,只有很少一部分是按年付费使用。这一点上,大大提高了Tableau的客户满意度。虽然看似一次性买断,会对Tableau的营收造成影响,其实不然,Tableau在上市之后仍然保持了较高的营收增速,近三年平均营收增速达到21%。

Tableau的强劲增长正通过其后续的服务能力体现,包括产品的更新迭代以及技术人员为客户解答各类问题。第一年的服务费包含在产品里面,从第二年开始要收取一定比例的费用,这个比例与产品价格和服务等级有关。最高服务等级是配备专线电话,7天24小时有人接听。经过多年发展,Tableau客户每年的服务费大概为产品费用的50%。

2019年6月,Tableau被收购。Salesforce与Tableau业务协同性与互补性很强:Salesforce具有完善的SaaS服务生态,擅长管理客户关系,提升业务质量,而Tableau则擅长于通过对数据的分析,让企业更好地发掘市场机会并作出相应决策。可以看到,两者在客群上有很大重叠。

Tableau与的联姻另一方面可以看成两家厂商应对的一种策略。早在2017年,微软已经在魔力象限中超越Tableau。微软的BI堆栈对于两者都具备无可比拟的优势,两者结合后,Tableau快速融入Salesforce生态,而Salesforce则可以借助Tableau摆脱对Oracle的依赖,提高自身的数据分析能力,相得益彰。

结语

BI是数据实现价值的窗口。无论是数据仓库还是敏捷式BI,都是使得数据分析变得越来越简单、数据价值体现越来越直观。从这个意义上看,BI的本质是整个数据分析乃至大数据领域的入口。所以和要牢牢把握住这个入口。

从发展趋势看,BI分别向数据端及分析端延伸。在数据量越来越多的情况下,数据管理会变得越来越容易;而通过自然语言理解和深度分析技术,前端的数据分析工作也将会越来越容易使用。利用语音或者文字进行交互式分析,将成为BI发展的主流方向,并最终大幅超过现有BI的应用范围。

在未来,能够与业务场景深度融合的BI产品将更具备竞争力。在工业互联网蓬勃发展的当今,业务核心系统的发展仍然较为缓慢,但BI作为辅助运营决策的主要方式,正在发挥越来越重要的作用。而对于业务系统的理解,将成为现有BI企业的巨大财富,并在未来竞争中构建竞争壁垒。

关于爱分析

爱分析ifenxi是一家专注于科技创新领域的研究机构,通过判断技术应用及行业发展趋势,以公司价值研究为内核,服务于企业决策者和机构投资者。爱分析重点关注技术和数据创新,以及由此带来的商业模式、行业与市场以及产业链变革机会,覆盖领域包括金融、企业服务、教育、汽车、零售、房产、医疗及工业等。

截至当前,爱分析已调研以上领域优质企业超过2500家,涵盖一、二级市场,并撰写超过百份榜单及行业报告,系统积累了各行业及公司研究方法和评价体系,建立起了广泛、专业的影响力。同时,爱分析已服务众多客户,包括各行业标杆公司、上市公司及主流一二级机构投资者。

法律声明

此报告为爱分析制作,报告中文字、图片、表格著作权为爱分析所有,部分文字、图片、表格采集于公开信息,著作权为原著者所有。未经爱分析事先书面明文批准,任何组织和个人不得更改或以任何方式传送、复印或派发此报告的材料、内容及其复印本予任何其它人。

此报告所载资料的来源及观点的出处皆被爱分析认为可靠,但爱分析不能担保其准确性或完整性,报告中的信息或所表达观点不构成投资建议,报告内容仅供参考。爱分析不对因使用此报告的材料而引致的损失而负上任何责任,除非法律法规有明确规定。客户并不能仅依靠此报告而取代行使独立判断。

    以上就是本篇文章【Tableau 157亿收购背后,50页深度报告看清BI的未来(下)| 爱分析报告】的全部内容了,欢迎阅览 ! 文章地址:http://sicmodule.glev.cn/quote/385.html 
     行业      资讯      企业新闻      行情      企业黄页      同类资讯      网站地图      返回首页 歌乐夫资讯移动站 http://sicmodule.glev.cn/mobile/ , 查看更多