热门推荐
生物学是什么?
2024-11-26 21:00  浏览:116

今天我们以中科院特聘教授吴家睿研究员的《生物学是什么》(14万字)为蓝本,系统而深入地理解生物学的核心思维与知识架构,全文5800字,强烈建议想要了解生物学的读者认真阅读。

生物学是什么?

生物学的发展史,可以说就是“还原论”与“整体论”之争的历史。

上个世纪,还原论成为主流;而随着研究的深入,人们逐渐认识到,生物体是一个复杂系统,它由数量巨大种类繁多的生物大分子相互作用(“互作”)而成。

因此,“还原论”与“整体论”之间的关系并不是“非此即彼”,而是对立统一的。

以前人们认为,构成生命的物质与构成非生命的物质有着本质区别,因为分为命名为“有机物”和“无机物”。1828年,维勒首次在实验室中用无机物合成了有机物,从此,人们认识到“两者并没有不可逾越的界限”。

碳原子外层有4个电子,因此得失电子均不容易,能形成最多4个共价键;同时,价电子离原子核很近,因此碳骨架既不会太活泼而容易分解,也不会太稳定而妨碍可塑性

可以说,正是碳原子之“中庸”,带来了千姿百态的有机世界。

几乎所有的有机化合物是手性分子,分为L型与D型。

手性会强烈地影响分子功能!历史上出现过制药公司弄错手性,而导致1.2万个畸形婴儿的惊天大案。

有趣的是,生物体中手性分子高度均一,比如:几乎所有氨基酸都是L型,所有核糖和其它大多单糖都是D型。镜像的分子似乎并没有什么不同或优势,地球上的生命对于分子手性的偏好,完全是随机的吗?

非也。

小分子通过聚合,形成了共价键(强键)骨架,同时也放大了不对称性,形成了具有特定方向的、高度有序的生物大分子。

单键和双键,是最常见的共价键。单键可以自由旋转,让分子柔韧;双键不能旋转,让分子刚性。

肽键”(连接氨基酸的键)比较特殊,它是具有部分双键性质的单键,因此蛋白质可以做到“刚柔并济”。

弱键主要包括三类:氢键、范德华力、疏水作用力。(后两项弱得都不敢在名字里带“键”字了)。

生命是一个高度动态的过程,只有弱键能满足这种可逆性的需求。

生物学的主要任务之一,就是“揭示生物大分子的结构及其与功能的关系”。

大分子具有高级结构,也就是“多级结构层次”,最高级结构决定了分子的功能。比如,我们把蛋白质的最高级结构(4级)破坏掉,其功能就丧失了。

最早人们以为,只要一级结构不变就可以自发地恢复高级结构;然而后来发现,该过程通常还需要一类称为“分子伴侣”的蛋白质来帮助才行。也就是说——

“一级结构”(内因)+“分子伴侣”(外因)= 高级结构(结果)

从系统科学以及哲学的观点来看,这几乎是必然的——事情的发生一定是内因与外因的共同作用。

生物学常讲“结构决定功能”,更为严谨地讲,应该是“结构与环境共同决定功能”。

生物学家的主要任务之二,就是“揭示信息在生命中的流动及其作用机制”。

整个基因组中,只有2%用于编码蛋白,被称为“外显子”,其余98%被称为“内含子”。原来人们以为,内含子是“无用的”,但是后来越来越多的实验表明,内含子也发挥了重要的作用。

这从复杂系统演化的视角来看,几乎是必然的,在网络中所有的节点都具有影响力,在不同的条件下发挥或大或小的作用,所谓因果关系只是我们为了理解而适当地归约罢了。

DNA翻译,利用非常巧妙的“同构”策略,将一个系统的结构用另一个系统的结构表现出来,类似于“翻译”。换言之,生命之书描绘的蓝图通过翻译实现生命大厦的建构。

遗传学的主要任务,就是“探讨遗传物质(基因型)与性状(表型)之间的关系”。

有一种表述叫“基因型决定表型”,但是,别忘了上面讲的“因缘和合”,其实更准确的表达应该是——“基因型与环境共同决定表型”。

从复杂系统的视角来看,基因型对表型的影响力模型,几乎必然是“网络模型”,而这其中有些基因的影响较大,称为“核心基因”,另一些的影响较小或者较为间接,称为“外周基因”(Science,2010)。

大多数动植物都是二倍体生物,即拥有分别来自父本和母本的两套染色体。比如,人体大约有30万亿个细胞,除了是二倍体的体细胞,就剩下单倍体的生殖细胞了。要知道,从体细胞形成生殖细胞的过程带来了更多的遗传变异,换言之,有性繁殖的目标,就是增加变异的程度,提高变异的速度。

以前人们认为,基因决定了命运;但后来发现,相同的DNA序列之下,基因表达调控方式也存在变化,由此诞生了一门新的学问——“表观遗传学”。

生物学是什么?

“生命之书”是一本彩色图书DNA和染色体带有的各种化学修饰就是不同的颜色;而且,文字(碱基)和色彩(化学修饰)都能被复制和传递

这就意味着,一方面,生物体内和体外的环境影响着基因的表达;另一方面,内外环境可以影响个体性状的改变。

外部环境的信息与机体内部的信息可以相互影响、双向流动,形成了一个理想的“天人合一”的整体。

命名常常有两种思路,一是基于“人为性状”,比如鲸长得像鱼,因此称为鲸鱼;而从“自然性状”角度,鲸是胎生的,应属哺乳动物而不属于鱼类。

想想看,我们是怎么给人起名字的呢?一般是用“姓”确定与父母的关系,用“名”来标识本人。其实生物学家也是用相同的策略,称为“双名命名法”。

那么,如何分类呢?

给生物分类的方法,跟图书馆给图书分类的方法是一样的,称为“阶元系统”,分类关系从大到小是“界、门、纲、目、科、属、种”。

生物学是什么?

最大的阶元“界”有5组——原核生物界、原生生物界、真菌界、植物界、动物界。

最小的阶元“种”,也称为“物种”(Species),则是最基本的分类单位,因此要保证物种在分类学上的“唯一性”。

人们目前主要以形态特征来确定物种。其实,物种只是人为的一种聚类方法”,达尔文就曾在《物种起源》中说:“物种这个名词是为了使得而任意加于一群互相密切类似的个体上的”。

还有一种方法,是以“是否生殖隔离”来判断物种,但这种方法也会出现许多意外,而且在分类的实践中难以操作。

无论是以“形态”还是以“生殖”来分类,都只是在表型方面的聚类方法;在基因技术如此发达的今天,我们是否能直接使用DNA来进行分类呢?

可以。2003年加拿大科学家提出采用“DNA条形码”来做物种的鉴定,很快20多个国家的科学家就联手启动了国际生命条形码计划(The International Barcode Of Life, IBOL)。这无疑是一种更加定量化的聚类方法。

生物学是什么?

达尔文在《物种起源》中指出:“同属的生物都是另一个并且一般是已经灭绝的物种的直系后代”。在此书中唯一的一幅插图,就是“生命之树”——

生物学是什么?

伟大的科学家都具备一种能力,能把世界万物都统一到一个框架里。

正是这样的演化关系,才提出了遗传工程中最核心的假设——“一个编码蛋白的基因在不同物种的体内都能表达,且功能相同”。

不过,目前人们越来越发现,分类关系相隔极远的物种间也会存在遗传物质交换的现象,称为“基因平行转移”。其中,病毒是该过程的主要参与者;由此也有学者提出“病毒进化论”的假说,可以解释许多目前无法解释的现象。

所以,生命世界一棵树,也是一张网一方面所有生物具有清晰的代际遗传关系,另一方面彼此之间编织出高度缠结的基因网络。这两种方式使得现存的与逝去的、此地的与彼地的各种生物形成了一个超越时空存在的整体。

人类社会的演化,展现出一种分工越来越细致的趋势,从而专业性强、协作效率高。

生命也是如此。

生命的演化方向也是努力把细胞的专业化水平提高,其策略称为“区域化”:

生物学是什么?

细胞:一个个特异化的分区

要知道,生命活动中的化学反应,可没有化学实验室中的各种极端条件(高温高压强酸强碱之类),并且表现出非常高的效率和精度,这么神奇的功能,是依靠什么实现的呢?

在细胞内,生物大分子混乱地拥挤在一起,在某些条件下,可以自发聚集起来形成一定的秩序的区域(“相分离”),并在这一区域内完成代谢。

另一种把各种生物大分子组织在一起的结构,就是“生物膜”(磷脂双分子层),将生命划分为一个个区域,而且为这些生物大分子提供了相应的内外环境和反应条件,可以说,有细胞膜才有生命

生物学是什么?

生物膜结构

真核细胞用生物膜分割包围形成了细胞器(Organelle),比如细胞核、线粒体、内质网、高尔基体、溶酶体,还有植物细胞特有的叶绿体和液泡。

神奇的是,不同细胞器的膜结构,也不完全相同,都被进行了特异性的改造。比如,细胞核的核膜上就有特殊的“核孔”结构,方便生物大分子的进出。

生物学是什么?

细胞核:最大、最重要的细胞器

更有趣的是,膜结构并非是一个静止的墙,而是始终处于流动之中。这样可以完成一些诸如“胞吞”或“细胞自噬”等高难度动作。

我们看到,细胞内部实现了高度的区域化分工,而细胞本身也存在分工。比如,人体约有50万亿个细胞,大致可分为200多种类型,这么多类型是从哪来的呢?

“细胞分化”(Cell Differentiation)

虽说每个细胞都具有相同的基因组,但是只允许表达某一部分基因(“选择性阅读”),从而变成了不同种类的细胞。

正是基于这一原理,国际上兴趣了一个大科学计划——“人类细胞图谱”(Human Cell Atlas, HCA),将采用分子表达谱来对细胞进行分类。

生物学是什么?

“人类细胞图谱”(Human Cell Atlas, HCA)

从一颗受精卵细胞,逐渐分化成各类细胞的过程,画出来就是一棵树状图,类似于家谱图一样,被称为细胞谱系(Cell Lineage)——

生物学是什么?

干细胞(血胚细胞)的分化图谱

这一棵树上,凡是具有分化能力(“干性”)的细胞,广义上都可称为“干细胞”(“树干”之“干”)。

细胞的分化程度越高,细胞的可塑性就越小。不过,1996年的克隆羊表明,高度分化的细胞也具有“全能性”。而且,2006年,将体细胞的基因表达程度进行了改写,使之成为一种类似于胚胎干细胞的多能干细胞(IPS Cell),这也引发了一个新的领域——“细胞重编程”(Cell Reprogramming)。

现在,人们越来越认识到,细胞分化是一个动态可逆的过程。所以说,细胞的命运不是绝对的,而是相对的。

生命是典型的复杂系统,那么其复杂性必然来自于两个方面:

整体大于部分之和。——亚里士多德

比如,在基因层级,人们现存知道,基因并不是“单干”的,它们之间通常有着密切的关系和互作,各基因共同形成一个复杂的基因调控网络——

生物学是什么?

酵母分离体群体的基因调控网络

生物分子网络普遍属于一类特殊的网络结构——无标度网络(Scale-free network),特点是“少数节点的连接数远高于平均值”,可以姑且想象成社会中少数权贵连接的资源远远高于平均水平。事实上,无标度网络模型在自然和社会中具有极其普遍的适用性

生物学是什么?

无标度网络(Scale-free network)的可视化

无标度网络的结构决定了它能以分形的方式自然地扩张,与生命的演化过程高度一致。另外,这种网络具有很强的鲁棒性,一是因为非核心节点的破坏对于网络的影响较小,二是因为网络具有冗余性,一条通路破坏后,另一条通路启用。

这样的网络也可以表征生物体内的环境调控,即所谓“内稳态”(1929)。内稳态的概念是对还原论指导下生命“碎片化”研究的矫正,也引发了一门新的学科——系统生物学,开始关注生物元件构成的网络及其状态。

生物大分子作为网络中的节点,是生命世界最基本、最主要的元件,那么网络的连接线就是“化学修饰”

化学修饰主要涉及三类蛋白质:“书写器”、“擦除器”、“阅读器”,我们一看名字就知道它们的作用了。这些化学修饰提供了“连接信息”,引导生物大分子之间的互作。

经典生物学通常使用“通路”(Pathway)一词来描述细胞信号的转导,不过这其实反映的是一种“线性思维”。“网络”(Network)概念则更能体现复杂性思维,表示各通路之间相互耦联相互影响,信息流也不是单向的,而是通过反馈形成双向流

生物学是什么?

“通路”(Pathway)与“网络”(Network)

讲到这,我们可以顺理成章地理解到,生命活动的调控的两种模式:

如果把元件(生物大分子)理解为“”,把元件之间的互作关系(化学修饰)理解为“”,那么组(“”)在一起后就形成了能够涌现(“”)新性质的复杂网络了。

生物学是什么?

生命是高度动态的开放系统,具有很大的不确定性,这种不确定性源自——

前面我们说人体约有200种细胞,可是,如果按照细胞基因表达谱来划分,估计有成千上万种了。而且,即使是同类型的细胞,由于微环境的差异,也会有所区别。这也就提醒我们——要以不确定性的角度来认识生命的复杂性

生物学是什么?
    以上就是本篇文章【生物学是什么?】的全部内容了,欢迎阅览 ! 文章地址:http://sicmodule.glev.cn/quote/9856.html 
     行业      资讯      企业新闻      行情      企业黄页      同类资讯      网站地图      返回首页 歌乐夫资讯移动站 http://sicmodule.glev.cn/mobile/ , 查看更多