推广 热搜: 好处  改变  还是  阅读  服务  语文  分享  越来越  是什么意思  自己 

树,二叉树(完全二叉树,满二叉树)概念图解

   日期:2024-11-10     作者:caijiyuan    caijiyuan   评论:0    移动:http://sicmodule.glev.cn/mobile/news/152.html
核心提示:树是n个结点的有限集合,有且仅有一个根结点,其余结点可分为m个根结点的子树。结点的度:一个结点拥有子树的个数称为度。比如A的

树是n个结点的有限集合,有且仅有一个根结点,其余结点可分为m个根结点的子树

树,二叉树(完全二叉树,满二叉树)概念图解

  1. 结点的度:一个结点拥有子树的个数称为度。比如A的度为3,C的度为2,H的度为0。度为0的结点称为叶子节点(D,F,G,H)。树的度是树中所有结点的度的最大值,此树的度为3。
  2. 树中结点的最大层次成为树的深度或高度。此树的深度为4。
  3. 父节点A的子结点B,C,D;B,C,D也是兄弟节点
  4. 树的集合称为森林.树和森林之间有着密切的关系.删除一个树的根结点,其所有原来的子树都是树,构成森林.用一个结点连接到森林的所有树的根结点就构成树.

        二叉树是每个节点最多拥有两个子节点,左子树和右子树是有顺序的不能任意颠倒。

前序遍历(前根遍历):——>左——>右

中序遍历(中根遍历):左——>——>右

后序遍历(后根遍历):左——>右——>

已知前序和中序,求后序问题,  前序 ABDGCEFH    中序 DGBAECHF

解法:根据前序、中序综合判断画出树的节点图,然后再写后序遍历:DGBEHFCA

(前序和中序的子树也满足前序或中序的规则)

二叉树的深度优先遍历(DFS)与广度优先遍历(BFS)

      DFS深度优先遍历:从根节点出发,沿着左子树方向进行纵向遍历,直到找到叶子节点为止。然后回溯到前一个节点,进行右子树节点的遍历,直到遍历完所有可达节点为止。利用数据结构“栈”,父节点入栈,父节点出栈,先右子节点入栈,后左子节点入栈。递归遍历全部节点。

DFS:ABDGCEFH

     BFS广度优先遍历:从根节点出发,在横向遍历二叉树层段节点的基础上纵向遍历二叉树的层次。利用数据结构“队列”,父节点入队,父节点出队列,先左子节点入队,后右子节点入队。递归遍历全部节点。

BFS:ABCDGEFH 

高度为h,由2^h-1个节点构成的二叉树称为满二叉树。

 

完全二叉树是由满二叉树而引出来的,若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数(即1~h-1层为一个满二叉树),第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

堆一般都是用完全二叉树来实现的。

本文地址:http://sicmodule.glev.cn/news/152.html    歌乐夫 http://sicmodule.glev.cn/ , 查看更多
 
标签: 二叉树
 
更多>同类行业资讯
0相关评论

新闻列表
企业新闻
推荐企业新闻
推荐图文
推荐行业资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2023001713号