曾经有一篇文章简单的介绍了CBIR(Content-based Image Retrieval),详细内容猛戳基于内容的图像检索技(CBIR)术相术介绍。CBIR由于其应用的广泛性,特别是近年来,随着数码设备的迅猛普及,网络上的图片每天以几十亿级的速度猛增,而且对于一些摄影爱好者和自拍族来说,电脑和存储设备里更是有数不清的图片,如何从这么多图片中找到自己所需的图片是困惑很多人的难题。而CBIR正是这问题的一种一种很好的解决方式。
本文将介绍用Python和OpenCV创建一个简单的图片搜索引擎。
系统架构:
CBIR系统的构建主要包括:
1)定义图像描述符(图像特征提取)
这一阶段,需要决定描述图像的哪一方面。图像的可描述特征很多、包括颜色、形状、纹理、能量等,而颜色有分为很多种,如颜色直方图、颜色矩等。在这一阶段,我们选定要提取的颜色特征,根据应用的不同,选取的颜色特征可以是一种或多种。
2)索引化数据集(存储)
现在有了图像描述符,接着就是将这个图像描述符应用得到数据集中的每幅图像,提取这些图像的特征,将其存储起来(如CSV文件、RDBMS、Redis数据库中),这样后续步骤就能使用以便比较。
3)定义相似矩阵
很好,现在有了许多特征向量。但如何比较这些特征向量呢?比较常用的流行的相似性度量方式有:欧几里德距离、余弦距离、或卡方距离、巴氏距离、闵式距离、相关性等。但实际中取决于两点:①、数据集;②、提取的特征类型。
4)检索
上面步骤都完成了,剩下的就是根据输入的图片,从图像库中检索相似的图像并返回了。用户会向系统提交一幅需要搜索的图片(例如从上传窗口或通过移动App提交),而你的任务是:1、提取这幅图像的特征;2、使用相似度函数将这幅图像的特征与已经索引化的特征进行比较。这样,只需根据相似度函数的结果,返回相关的图像就可以了。
环境说明:
python3.6
opencv3
执行说明:
1、首先生成index检索文件:python index.py -d d:/picture/test/ -i d:/picture/index.csv
2、接着就是搜索相似图片:python Search.py -i d:/picture/index.csv -q d:/pic
本文地址:http://sicmodule.glev.cn/quote/11450.html 歌乐夫 http://sicmodule.glev.cn/ , 查看更多